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Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant
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Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.
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• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)
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• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

1.1. Welcome to Merchant’s documentation! 19

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

20 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:
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>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:
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• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True
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# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...
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# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
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... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.
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Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS
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WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...
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# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.
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• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
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'pay_pal': {
"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:
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<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
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... {"obj": world_pay},

... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}
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Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
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# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.
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from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}
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Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)
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In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

60 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 117

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 121

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 185

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 235



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the

236 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration

238 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

254 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 259

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 313

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 393

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

408 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

420 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

426 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars

1.1. Welcome to Merchant’s documentation! 447



Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

1.1. Welcome to Merchant’s documentation! 501

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

514 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

536 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

1.1. Welcome to Merchant’s documentation! 539



Merchant Documentation Documentation, Release 0.09a

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway
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Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 597

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 663

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

1.1. Welcome to Merchant’s documentation! 673

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

724 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

730 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

732 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

758 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1.1. Welcome to Merchant’s documentation! 769

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

790 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 801

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

830 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

860 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

884 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

992 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

1.1. Welcome to Merchant’s documentation! 1011

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",

1034 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 1047

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1060 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane
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* Beanstream
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals
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• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card
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– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server
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* Stripe Payments
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* WePay
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Stripe
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* Authorize.Net Direct Post Method
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1116 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

1.1. Welcome to Merchant’s documentation! 1125

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

1174 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

1.1. Welcome to Merchant’s documentation! 1191

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 1219

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing
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* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1276 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1290 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 1307

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1312 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1. Welcome to Merchant’s documentation! 1327

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 1333



Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1352 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1372 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1403

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 1411

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1434 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

1.1. Welcome to Merchant’s documentation! 1445

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1460 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1470 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1494 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 1497

https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1522 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling


Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1548 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 1555



Merchant Documentation Documentation, Release 0.09a

# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1573

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/


Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

1610 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1664 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1668 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 1673

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1675

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

1698 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1710 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1718 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

1750 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

1758 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

1.1. Welcome to Merchant’s documentation! 1769



Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 1791



Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 1843

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/


Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1890 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1892 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.
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• Install Merchant

• Credit Card
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Authorize.Net Direct Post Method
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars

1932 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

1.1. Welcome to Merchant’s documentation! 1945

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1946 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 1953

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 1955

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1972 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1990 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

2002 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

2020 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

2026 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

2032 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

2034 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 2057

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

2066 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 2069

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2073



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2085

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

1.1. Welcome to Merchant’s documentation! 2107



Merchant Documentation Documentation, Release 0.09a

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

2108 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

1.1. Welcome to Merchant’s documentation! 2125



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments
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* Chargebee
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect
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* Authorize.Net Direct Post Method

* Global Iris RealMPI
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 2145

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2151

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

2152 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

2164 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

2176 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 2185

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

2214 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 2243

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

2254 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

2262 Chapter 1. Welcome to Merchant’s documentation!

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 2279

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

2290 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 2355

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration

2398 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

1.1. Welcome to Merchant’s documentation! 2413



Merchant Documentation Documentation, Release 0.09a

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

2428 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 2447



Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 2461

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 2467

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling


Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars

2472 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 2501

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 2521

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

2530 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

2594 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 2613



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

2644 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

2650 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

2678 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

1.1. Welcome to Merchant’s documentation! 2691

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

2696 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 2713

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01
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• Install Merchant

• Credit Card
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Braintree Payments Transparent Redirect
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* Authorize.Net Direct Post Method
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

1.1. Welcome to Merchant’s documentation! 2735

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

2760 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 2765

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 2771

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 2783

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

2788 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/


Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 2831

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

2850 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 2853

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

2880 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

2932 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

2934 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane
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* Beanstream
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 2959

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

2984 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.01
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

3026 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

3030 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 3041

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

3046 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 3051



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

3086 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 3109

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 3113



Merchant Documentation Documentation, Release 0.09a

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

3114 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

3142 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling


Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 3153



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3181



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

1.1. Welcome to Merchant’s documentation! 3213



Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

3230 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 3251

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

1.1. Welcome to Merchant’s documentation! 3277

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling


Merchant Documentation Documentation, Release 0.09a

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars

3282 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 3293

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />

3308 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

3314 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

3336 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

3372 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

3418 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration

3478 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant
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– On-site Processing
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* Braintree Payments Server to Server
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* PayPal
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* RBS WorldPay
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• Signals

• Writing your own gateway
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 3507

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

3512 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01
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• Overview
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• Credit Card

• Gateways
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* Google Checkout
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

3530 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 3531

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 3567

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 3583

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

3640 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

1.1. Welcome to Merchant’s documentation! 3647



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay
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* Chargebee
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* Global Iris

– Off-site Processing

* PayPal
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect
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* eWAY

* Authorize.Net Direct Post Method
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• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3726 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 3729

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

3736 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 3743



Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration

3748 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

3782 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments

* Paylane
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* Global Iris

– Off-site Processing

* PayPal
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* RBS WorldPay
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* Braintree Payments Transparent Redirect
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* Authorize.Net Direct Post Method
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• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

3816 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 3821



Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

3826 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify

3850 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.1. Welcome to Merchant’s documentation! 3857

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 3899

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 3911

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

3930 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

3942 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

1.1. Welcome to Merchant’s documentation! 3959

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

3966 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

3968 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 3975

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 3991



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

3992 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

3996 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant
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– On-site Processing
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* Braintree Payments Server to Server
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* PayPal

* Google Checkout

* RBS WorldPay
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

4038 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 4051

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

4072 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

1.1. Welcome to Merchant’s documentation! 4123

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

4128 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4150 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

4162 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 4169

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

4198 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

4200 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 4233



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

4272 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

4276 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 4287

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

4306 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4318 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

4324 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

4360 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 4383

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 4401



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 4419

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

1.1. Welcome to Merchant’s documentation! 4447

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 4451

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 4465



Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

1.1. Welcome to Merchant’s documentation! 4467

https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

4476 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

4484 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

1.1. Welcome to Merchant’s documentation! 4491



Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 4505

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

4510 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

1.1. Welcome to Merchant’s documentation! 4527

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

4550 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

4562 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

4574 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 4585

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

4588 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4597



Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

4604 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 4621

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

1.1. Welcome to Merchant’s documentation! 4633

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

4636 Chapter 1. Welcome to Merchant’s documentation!

https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

4642 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",

4690 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 4711

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

4718 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

4744 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

4756 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

4792 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

4806 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",

4814 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/testaccount/
http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

4852 Chapter 1. Welcome to Merchant’s documentation!

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

4854 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

1.1. Welcome to Merchant’s documentation! 4867



Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 4869

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.

1.1. Welcome to Merchant’s documentation! 4885

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",

4896 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

1.1. Welcome to Merchant’s documentation! 4913

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

1.1. Welcome to Merchant’s documentation! 4929

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

1.1. Welcome to Merchant’s documentation! 4935



Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

4944 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

4964 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

5008 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5055

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

5066 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

1.1. Welcome to Merchant’s documentation! 5075

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

1.1. Welcome to Merchant’s documentation! 5105



Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),

5106 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals
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• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5112 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

1.1. Welcome to Merchant’s documentation! 5141

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01
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– On-site Processing

* Authorize.Net
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* Paylane

* WePay
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* Global Iris
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* PayPal
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* Braintree Payments Transparent Redirect
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• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

1.1. Welcome to Merchant’s documentation! 5149

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

5196 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful

5236 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 5253

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.
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• Install Merchant
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Braintree Payments Transparent Redirect
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

5288 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

5314 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

5340 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

5364 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

1.1. Welcome to Merchant’s documentation! 5417



Merchant Documentation Documentation, Release 0.09a

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

1.1. Welcome to Merchant’s documentation! 5441



Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

1.1. Welcome to Merchant’s documentation! 5465

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

5496 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

1.1. Welcome to Merchant’s documentation! 5507

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

5510 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 5521

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

5546 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 5595

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

5620 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

5652 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

5654 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5665

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

5666 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 5667

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

5672 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

5678 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.
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• Install Merchant

• Credit Card
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Braintree Payments Transparent Redirect
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* Authorize.Net Direct Post Method
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• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

5714 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

5732 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.1. Welcome to Merchant’s documentation! 5751



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 5755

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

5790 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

5812 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

1.1. Welcome to Merchant’s documentation! 5855

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

5856 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 5861

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.1. Welcome to Merchant’s documentation! 5889

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

5902 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

5912 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 5919

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 5935

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

5946 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

1.1. Welcome to Merchant’s documentation! 5949

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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* Beanstream

* Chargebee
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

5968 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1. Welcome to Merchant’s documentation! 5973



Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 5979

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

1.1. Welcome to Merchant’s documentation! 6003

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 6031

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6041

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful

6046 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6053

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

1.1. Welcome to Merchant’s documentation! 6083



Merchant Documentation Documentation, Release 0.09a

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

6094 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 6151



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.1. Welcome to Merchant’s documentation! 6167

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant

1.1. Welcome to Merchant’s documentation! 6173



Merchant Documentation Documentation, Release 0.09a

website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6177

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

1.1. Welcome to Merchant’s documentation! 6179

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

6206 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

1.1. Welcome to Merchant’s documentation! 6241

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 6269

http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6294 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the

1.1. Welcome to Merchant’s documentation! 6311

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

6318 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

6334 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

1.1. Welcome to Merchant’s documentation! 6341

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

1.1. Welcome to Merchant’s documentation! 6345

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

6384 Chapter 1. Welcome to Merchant’s documentation!

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

6392 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6399

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6402 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 6433

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/


Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 6447

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6459

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01
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• Install Merchant

• Credit Card
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* Global Iris
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* PayPal
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* RBS WorldPay
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* Braintree Payments Transparent Redirect
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6537

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6564 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 6599

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

1.1. Welcome to Merchant’s documentation! 6619

http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay
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* Chargebee
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe
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* Authorize.Net Direct Post Method

* Global Iris RealMPI
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• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

1.1. Welcome to Merchant’s documentation! 6637

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

6658 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

1.1. Welcome to Merchant’s documentation! 6669

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 6671

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

6672 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

6712 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

1.1. Welcome to Merchant’s documentation! 6729

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 6763

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* Stripe Payments

* Paylane

* WePay
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* Chargebee
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 6773

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

6828 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

6842 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/
http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful

6856 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

6862 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

1.1. Welcome to Merchant’s documentation! 6863

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 6873

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

6906 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

1.1. Welcome to Merchant’s documentation! 6933



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

6966 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay
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* Braintree Payments Transparent Redirect
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* Authorize.Net Direct Post Method

* Global Iris RealMPI
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7005

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7006 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

1.1. Welcome to Merchant’s documentation! 7033

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

7034 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

7048 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

7070 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

1.1. Welcome to Merchant’s documentation! 7081

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

1.1. Welcome to Merchant’s documentation! 7105

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 7117

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s

1.1. Welcome to Merchant’s documentation! 7149

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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• Overview

• Install Merchant

• Credit Card
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– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* Global Iris
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7185



Merchant Documentation Documentation, Release 0.09a

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7188 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

7208 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {

7216 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 7225



Merchant Documentation Documentation, Release 0.09a

# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

1.1. Welcome to Merchant’s documentation! 7231



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

7268 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7287

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* Stripe Payments
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* WePay

* Beanstream

* Chargebee
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* Global Iris
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* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

1.1. Welcome to Merchant’s documentation! 7357

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

1.1. Welcome to Merchant’s documentation! 7409

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

7466 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1. Welcome to Merchant’s documentation! 7471

https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 7487

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

7546 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",

7556 Chapter 1. Welcome to Merchant’s documentation!

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",

7560 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

7570 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

1.1. Welcome to Merchant’s documentation! 7581

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

1.1. Welcome to Merchant’s documentation! 7607

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

1.1. Welcome to Merchant’s documentation! 7619

http://docs.python-requests.org/en/latest/index.html
https:/


Merchant Documentation Documentation, Release 0.09a

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

7626 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

7634 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

1.1. Welcome to Merchant’s documentation! 7651

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.1. Welcome to Merchant’s documentation! 7659

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 7713

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

1.1. Welcome to Merchant’s documentation! 7725



Merchant Documentation Documentation, Release 0.09a

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.1. Welcome to Merchant’s documentation! 7751

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify

1.1. Welcome to Merchant’s documentation! 7765



Merchant Documentation Documentation, Release 0.09a

# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

7786 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals
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• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

1.1. Welcome to Merchant’s documentation! 7815

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}

1.1. Welcome to Merchant’s documentation! 7825

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

1.1. Welcome to Merchant’s documentation! 7827

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

1.1. Welcome to Merchant’s documentation! 7857

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

7862 Chapter 1. Welcome to Merchant’s documentation!

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

7870 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

7906 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 7913

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 7917

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

7968 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

1.1. Welcome to Merchant’s documentation! 7971

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1. Welcome to Merchant’s documentation! 7975



Merchant Documentation Documentation, Release 0.09a

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")

7986 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/
http://developer.authorize.net/testaccount/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

1.1. Welcome to Merchant’s documentation! 7993

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/
https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

7998 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

8050 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when

1.1. Welcome to Merchant’s documentation! 8055

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin


Merchant Documentation Documentation, Release 0.09a

>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

8088 Chapter 1. Welcome to Merchant’s documentation!

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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• Initial commit.
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• Install Merchant

• Credit Card
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– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server
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* Global Iris
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* Amazon FPS
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• Signals
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• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1. Welcome to Merchant’s documentation! 8183

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/


Merchant Documentation Documentation, Release 0.09a

>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

1.1. Welcome to Merchant’s documentation! 8187

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

1.1. Welcome to Merchant’s documentation! 8221

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

1.1. Welcome to Merchant’s documentation! 8223

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee
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* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

8250 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

1.1. Welcome to Merchant’s documentation! 8253

http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1. Welcome to Merchant’s documentation! 8261

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

1.1. Welcome to Merchant’s documentation! 8267

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_standard
https://github.com/dcramer/django-paypal


Merchant Documentation Documentation, Release 0.09a

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

1.1. Welcome to Merchant’s documentation! 8269

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

1.1. Welcome to Merchant’s documentation! 8295

http://www.eway.com.au/Developer/eway-api/hosted-payment-solution.aspx
http://en.wikipedia.org/wiki/SOAP
https://fedorahosted.org/suds/
https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

8352 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

1.1. Welcome to Merchant’s documentation! 8359

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/


Merchant Documentation Documentation, Release 0.09a

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing
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* Braintree Payments Server to Server
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* Stripe Payments
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* WePay
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* Global Iris
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* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe
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* Authorize.Net Direct Post Method

* Global Iris RealMPI
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• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />

8404 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

8410 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

8428 Chapter 1. Welcome to Merchant’s documentation!

http://www.chargebee.com/


Merchant Documentation Documentation, Release 0.09a

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

8442 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

1.1. Welcome to Merchant’s documentation! 8467

https://www.wepay.com/
http://pypi.python.org/pypi/wepay/


Merchant Documentation Documentation, Release 0.09a

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

8484 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

8516 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

8524 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2


Merchant Documentation Documentation, Release 0.09a

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

1.1. Welcome to Merchant’s documentation! 8557



Merchant Documentation Documentation, Release 0.09a

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

8562 Chapter 1. Welcome to Merchant’s documentation!

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

8572 Chapter 1. Welcome to Merchant’s documentation!

http://www.rbsworldpay.com/
http://rbsworldpay.com/support/bg/index.php?page=development&sub=integration&c=UK


Merchant Documentation Documentation, Release 0.09a

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

8584 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/agiliq/merchant
https://github.com/agiliq/merchant


Merchant Documentation Documentation, Release 0.09a

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.1. Welcome to Merchant’s documentation! 8593

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://developer.authorize.net/api/aim/


Merchant Documentation Documentation, Release 0.09a

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",

8600 Chapter 1. Welcome to Merchant’s documentation!

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

8610 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful

1.1. Welcome to Merchant’s documentation! 8611

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

8630 Chapter 1. Welcome to Merchant’s documentation!

http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1. Welcome to Merchant’s documentation! 8655



Merchant Documentation Documentation, Release 0.09a

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
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"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.
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The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.
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• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1.1. Welcome to Merchant’s documentation! 8679

https://fedorahosted.org/suds/


Merchant Documentation Documentation, Release 0.09a

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

8680 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.
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• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

8688 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify

8710 Chapter 1. Welcome to Merchant’s documentation!



Merchant Documentation Documentation, Release 0.09a

# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

1.1. Welcome to Merchant’s documentation! 8711

http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/
http://www.braintreepayments.com/docs/python/transactions/result_handling
http://www.braintreepayments.com/docs/python/transactions/create_tr#tr_data


Merchant Documentation Documentation, Release 0.09a

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',

8712 Chapter 1. Welcome to Merchant’s documentation!

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",

8734 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl


Merchant Documentation Documentation, Release 0.09a

verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.
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Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:
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pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required
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• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
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...
}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:
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>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.
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Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)
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# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}
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• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
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IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
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>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
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"redirect_uri": "http://example.com/success/redirect/"
})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:
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Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:
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INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })
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In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
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... "amount": 100,

... "currency": "USD",

... "desc": "Test Item",

... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":
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return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:
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stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information
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• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference
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•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.
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Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:
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def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):
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return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.
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• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”
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– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.
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• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.
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• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)
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# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",

1.1. Welcome to Merchant’s documentation! 8799



Merchant Documentation Documentation, Release 0.09a

"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
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# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

8802 Chapter 1. Welcome to Merchant’s documentation!

https://paylane.com/
https://fedorahosted.org/suds
https://direct.paylane.com/wsdl/production/Direct.wsdl
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:
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• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):
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# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

8806 Chapter 1. Welcome to Merchant’s documentation!

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
http://activemerchant.org/
https://www.paypal.com/ipn


Merchant Documentation Documentation, Release 0.09a

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
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<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.
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• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
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"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.
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from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:
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1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

8818 Chapter 1. Welcome to Merchant’s documentation!

http://developer.authorize.net/api/dpm
http://authorize.net/


Merchant Documentation Documentation, Release 0.09a

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize
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– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...
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def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change
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• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."
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# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:
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python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.
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• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:
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• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.
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• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi
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Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:
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>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.
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Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})
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# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.
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• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
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"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.
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Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...
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# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)
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In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:
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• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
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<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.
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• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
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# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.
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• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
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(r'^stripe/', include(stripe_obj.urls)),
)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.
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4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url
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Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month
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•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"
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return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void
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– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.
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Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes
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0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration
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0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout
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* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors Merchant, is a django app that offers a uniform
api and pluggable interface to interact with a variety of payment processors. It is heavily inspired from Ruby’s Active-
Merchant.

Overview Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card The CreditCard class is a helper class with some useful methods mainly for validation. This class is
available in billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.
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Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)
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• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it
is easy to extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:
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• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing Onsite processing refers to the payment mechanism where the customer stays on the merchant
website and the authentication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway This gateway implements the Authorize.Net Advanced Integration Method (AIM).
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Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream Beanstream is a gateway headquartered in Canada and offering payment processing across North Amer-
ica.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
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"HASHCODE": "???",
}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server Braintree Payments Server to Server is a gateway provided by Braintree
Payments to services which are willing to take the burden of PCI compliance. This does not involve any redirects and
only Server to Server calls happen in the background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)
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# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality
to plug to multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}
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Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway
Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
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... last_name = "User",

... month=10, year=2011,

... number="4222222222222",

... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden
of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS
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# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments WePay.com is a service that lets you accept payments not just from credit cards but also from
bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",
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month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing Off-site processing is the payment mechanism where the customer is redirected to the payment
gateways site to complete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
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website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard PayPal Website Payments Standard (PWS) is an offsite payment processor.
This method of payment is implemented in merchant as a wrapper on top of django-paypal. You need to install the
package to be able to use this payment processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.
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Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
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... "item_name_2": "Test Item 2",

... "amount_2": "20",

... "invoice": "UID",

... "notify_url": "http://example.com/paypal-ipn-handler/",

... "return_url": "http://example.com/paypal/",

... "cancel_return": "http://example.com/paypal/unsuccessful/",

... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee
PCI compliance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
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# WorldPay admin dashboard for the notification URL
)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service Amazon FPS, is a service that allows for building very flexible payment sys-
tems. The service can be classified as a part Gateway and part Integration (offsite processor). This is because the
customer is redirected to the Amazon site where he authorizes the payment and after this the customer is redirected
back to the merchant site with a token that is used by the merchant to transact with the customer. In plain offsite
processors, the authorization and transaction take place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

1.1. Welcome to Merchant’s documentation! 8877

http://aws.amazon.com/fps/
http://aws.amazon.com/documentation/fps/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
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def transaction(self, request):
# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect Braintree Payments Transparent Redirect is a service offered by Brain-
tree Payments to reduce the complexity of PCI compliance.
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Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}
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braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration Stripe Payment Integration is a service offered by Stripe Payment to reduce the com-
plexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
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...
else:

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Pay-
ments facility. Their service makes it extremely easy to be PCI-DSS compliant by allowing you to never receive
customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters
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• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:
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•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}
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For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method Authorize.Net Direct Post Method is a service offered by Authorize.Net to
reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
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'x_recurring_bill': 'F',
}

int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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Writing a new gateway Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a
new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant While we make all attempts to cover most of the functionality of the payment processors but
may fall short sometimes. There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:
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• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant While there is no requirement for you to contribute your new gateway code or changes
back to the upstream project, you can play a good samaritan by contributing back to the project and helping scores of
people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.
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0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations
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• Contributing to Merchant

• Changelist

Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

Overview

Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant

You can use any of the following methods to install merchant.
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• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a
look at local.py-dist for reference.

Running the Test Suite By default, the test suite is configured to run tests for all the gateways and integrations
which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.
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– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gate-
way.validate_card() which will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)
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Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.
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• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.
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• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
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...
}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
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>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True
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# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",
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}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.
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Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}
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Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
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PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD

1.1. Welcome to Merchant’s documentation! 8905

https://stripe.com/
http://pypi.python.org/pypi/stripe/
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
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"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
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def we_pay_recurring(request):
options = {"period": "monthly", "start_time": "2012-01-01",

"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view,
an Integration renders a form (usually with hidden fields) through a template tag. An integration may also support
asynchronous and real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.
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Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode By default the form renders in test mode with POST against sandbox.paypal.com. Add
following to you settings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:
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>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.
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The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
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<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.
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• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example In any app that is present in the settings.INSTALLED_APPS, subclass the
AmazonFpsIntegration and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
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reverse("fps_return_url")),
}

# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.
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• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting
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• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.
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Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:
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Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description
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•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:
# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
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order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.
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• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:
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– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
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...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
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{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration
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0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi
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Indices and tables

• genindex

• modindex

• search

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

Overview

Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

1.1. Welcome to Merchant’s documentation! 8927

http://github.com/agiliq/merchant
http://www.djangoproject.com/
http://activemerchant.org/
http://pypi.python.org/pypi/django-merchant


Merchant Documentation Documentation, Release 0.09a

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.
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– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”
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– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.
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Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.
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The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.
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Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:
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"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.
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Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
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>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.
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• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.
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Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:
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MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.
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Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
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...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.
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• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function Very much like Gateways, Integrations have a method of easily referencing the corresponding
integration class through the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)
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MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:
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{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:
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>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.
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• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):
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# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
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compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",
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RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):
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# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.
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access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...
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Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict
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Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23

Example:

# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:
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{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture
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– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...
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Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).
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• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error
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0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.

0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay
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* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.1.2 Indices and tables

• genindex

• modindex

• search

1.1.3 Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.
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1.1.4 Overview

Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

1.1.5 Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables
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Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase

1.1.6 Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.
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• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)
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• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

1.1.7 Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.
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• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.

• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.
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• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.

• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

1.1.8 On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

1.1.9 Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:
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MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.1.10 Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
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...
}

Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

1.1.11 Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
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>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1.12 Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
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True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

1.1.13 Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
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"SITE": "some-test",
"API_KEY": "???",

}
...

}

Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'
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1.1.14 eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.1.15 Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
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"USERNAME": "???",
"PASSWORD": "???",

}
...

}

Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.1.16 PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

1.1. Welcome to Merchant’s documentation! 8975

http://github.com/dcramer/django-paypal/
https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/wp_pro
http://github.com/dcramer/django-paypal/


Merchant Documentation Documentation, Release 0.09a

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

1.1.17 Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

Example:

Simple usage:
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>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.1.18 WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
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for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
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resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

1.1.19 Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.
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• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.

Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

1.1.20 PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True
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}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']

Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
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<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>

1.1.21 WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
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... {"obj": world_pay},

... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

1.1.22 Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
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"AWS_SECRET_ACCESS_KEY": "???"
}

}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")
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In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

1.1.23 Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:
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• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:
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braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}

1.1.24 Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...
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In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

1.1.25 eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment
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• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token
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•reference

•title

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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Example:

# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

1.1.26 Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.
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• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:
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{% load render_integration from billing_tags %}
{% render_integration adp %}

1.1.27 Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.1.28 Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.
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• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

1.1.29 Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:
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modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.1.30 Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

1.1.31 Changes

0.4 (upcoming)

• Added python3 support

• Removed google checkout

0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

0.1

• Added PIN payments support

0.09

• Removed Samurai gateway and integration

0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

0.07

• Added Chargebee support

• Added Beanstream gateway

0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

0.05

• Added Paylane gateway support.
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0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

0.03

• Added support for Stripe and Samurai gateways and integrations.

0.02

• Added a setup.py and uploaded the package to pypi

0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS
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* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

1.2 Indices and tables

• genindex

• modindex

• search

1.3 Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.

1.4 Overview

Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
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>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}

1.5 Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

1.5.1 Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

1.5.2 Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

1.5.3 Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase
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1.6 Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

1.6.1 Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

1.6.2 Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.

• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

1.6.3 Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:
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Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo

– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)
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• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards

1.7 Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

1.7.1 Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

1.7.2 Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.
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• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.
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• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

1.7.3 Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

1.8 On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.

1.9 Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

1.9.1 Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
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>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}

1.10 Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

1.10.1 Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

1.10. Beanstream 9005

http://www.beanstream.com/site/ca/index.html
http://github.com/dragonx/beanstream


Merchant Documentation Documentation, Release 0.09a

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])

1.11 Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

1.11.1 Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.12 Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

9006 Chapter 1. Welcome to Merchant’s documentation!

http://bitcoin.org/
https://en.bitcoin.it/wiki/Merchant_Howto#Using_a_third-party_plugin
http://www.braintreepayments.com/gateway/api
http://www.braintreepayments.com/
http://pypi.python.org/pypi/braintree/


Merchant Documentation Documentation, Release 0.09a

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

1.12.1 Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True

# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
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True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12

1.13 Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

1.13.1 Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")
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# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'

1.14 eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

1.14.1 Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
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"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}

1.15 Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

1.15.1 Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
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verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.16 PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

1.16.1 Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:
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>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.

1.17 Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

1.17.1 Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
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>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS

1.18 WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
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...
}

1.18.1 Example:

Simple usage:

wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
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"redirect_uri": "http://example.com/redirect/success/"}
resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...

1.19 Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

1.19.1 Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.

• urls: A property that returns the above method.
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Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>

1.20 PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

1.20.1 Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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1.20.2 Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
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<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />
</form>

1.21 WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

1.21.1 Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}
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Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>

1.22 Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.
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• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

1.22.1 Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
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# Amazon FPS admin dashboard for the notification URL
)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
if request.is_secure():

url_scheme = "https"
domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

1.23 Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.
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• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
(added through either the add_fields or add_field methods) and tr_data.

1.23.1 Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:
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{% load render_integration from billing_tags %}
{% render_integration bp %}

1.24 Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

1.24.1 Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:
# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))
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In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}

1.25 eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country

• ip_address (unicode) – Customer’s IP address
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Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

•first_name
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•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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1.25.1 Example:

# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>

1.26 Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.
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• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.

1.26.1 Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:
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{% load render_integration from billing_tags %}
{% render_integration adp %}

1.27 Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.

1.28 Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py
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So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...

1.29 Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:
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<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")

1.30 Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.

1.31 Changes

1.31.1 0.4 (upcoming)

• Added python3 support

• Removed google checkout

1.31.2 0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt
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1.31.3 0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

1.31.4 0.1

• Added PIN payments support

1.31.5 0.09

• Removed Samurai gateway and integration

1.31.6 0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net

• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

1.31.7 0.07

• Added Chargebee support

• Added Beanstream gateway

1.31.8 0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

1.31.9 0.05

• Added Paylane gateway support.
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1.31.10 0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

1.31.11 0.03

• Added support for Stripe and Samurai gateways and integrations.

1.31.12 0.02

• Added a setup.py and uploaded the package to pypi

1.31.13 0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay
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* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist
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CHAPTER 2

Indices and tables

• genindex

• modindex

• search
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CHAPTER 3

Merchant: Pluggable and Unified API for Payment Processors

Merchant, is a django app that offers a uniform api and pluggable interface to interact with a variety of payment
processors. It is heavily inspired from Ruby’s ActiveMerchant.
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CHAPTER 4

Overview

Simple how to:

# settings.py
# Authorize.Net settings
AUTHORIZE_LOGIN_ID = "..."
AUTHORIZE_TRANSACTION_KEY = "..."

# PayPal settings
PAYPAL_TEST = True
PAYPAL_WPP_USER = "..."
PAYPAL_WPP_PASSWORD = "..."
PAYPAL_WPP_SIGNATURE = "..."

# views.py or wherever you want to use it
>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User,
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
>>>
>>> g2 = get_gateway("pay_pal")
>>>
>>> response2 = g2.purchase(100, cc, options = {...})
>>> response2
{"status": "SUCCESS", "response": <PayPalNVP object>}
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CHAPTER 5

Installing Merchant

You can use any of the following methods to install merchant.

• The recommended way is to install from PyPi:

pip install django-merchant

• If you are feeling adventurous, you might want to run the code off the git repository:

pip install -e git+git://github.com/agiliq/merchant.git#egg=django-merchant

5.1 Post-installation

• Install the dependencies for the gateways as prescribed in the individual gateway doc.

• Reference the billing app in your settings INSTALLED_APPS.

• Run python manage.py syncdb to create the new required database tables

5.2 Configuration

To configure a gateway/integration add the corresponding key to MERCHANT_SETTINGS. Take a look at
local.py-dist for reference.

5.3 Running the Test Suite

By default, the test suite is configured to run tests for all the gateways and integrations which are configured:

python manage.py test billing

Tests for gateways and integrations which are not configured will be skipped.

If you are planning to integrate your app with a specific gateway/integration then you might wish to run only that apps
test suite. For example, to run the Google Checkout Integration test case:

python manage.py test billing.GoogleCheckoutTestCase
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CHAPTER 6

Credit Card

The CreditCard class is a helper class with some useful methods mainly for validation. This class is available in
billing.utils.credit_card.

6.1 Attribute Reference

• regexp: The compiled regular expression that matches all card numbers for the card issuing authority. For the
CreditCard class, this is None. It is overridden by subclasses.

• card_type: Points to a one of CreditCard‘s subclasses. This attribute is set by the validate_card method of the
selected gateway.

• card_name: Card issuing authority name. Generally not required, but some gateways expect the user to figure
out the credit card type to send with the requests.

6.2 Method Reference

• __init__: This method expects 6 keyword arguments. They are

– first_name: The first name of the credit card holder.

– last_name: The last name of the credit card holder.

– cardholders_name: The full name of the credit card holder, as an alternative to supplying first_name and
last_name.

– month: The expiration month of the credit card as an integer. Required

– year: The expiration year of the credit card as an integer. Required

– number: The credit card number (generally 16 digits). Required

– verification_value: The card security code (CVV2). Required

• is_luhn_valid: Checks the validity of the credit card number by using the Luhn’s algorithm and returns a
boolean. This method takes no arguments.

• is_expired: Checks if the expiration date of the card is beyond today and returns a boolean. This method takes
no arguments.

• valid_essential_attributes: Verifies if all the 6 arguments provided to the __init__ method are filled and returns
a boolean.
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• is_valid: Checks the validity of the card by calling the is_luhn_valid, is_expired and valid_essential_attributes
method and returns a boolean. This method takes no arguments.

• expire_date: Returns the card expiry date in the “MM-YYYY” format. This is also available as a property.

• name: Returns the full name of the credit card holder by concatenating the first_name and last_name.
This is also available as a property.

6.3 Subclasses

Normally you do not use the subclasses directly. Instead, you use CreditCard, and call gateway.validate_card() which
will add a card_type attribute which is the subclass.

The various credit cards and debit cards supported by Merchant are:

6.3.1 Credit Cards

• Visa

– card_name = “Visa”

– regexp = re.compile(‘^4d{12}(d{3})?$’)

• MasterCard

– card_name = “MasterCard”

– regexp = re.compile(‘^(5[1-5]d{4}|677189)d{10}$’)

• Discover

– card_name = “Discover”

– regexp = re.compile(‘^(6011|65d{2})d{12}$’)

• AmericanExpress

– card_name = “Amex”

– regexp = re.compile(‘^3[47]d{13}$’)

• DinersClub

– card_name = “DinersClub”

– regexp = re.compile(‘^3(0[0-5]|[68]d)d{11}$’)

• JCB

– card_name = “JCB”

– regexp = re.compile(‘^35(28|29|[3-8]d)d{12}$’)

6.3.2 Debit Cards

• Switch

– card_name = “Switch”

– regexp = re.compile(‘^6759d{12}(d{2,3})?$’)

• Solo
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– card_name = “Solo”

– regexp = re.compile(‘^6767d{12}(d{2,3})?$’)

• Dankort

– card_name = “Dankort”

– regexp = re.compile(‘^5019d{12}$’)

• Maestro

– card_name = “Maestro”

– regexp = re.compile(‘^(5[06-8]|6d)d{10,17}$’)

• Forbrugsforeningen

– card_name = “Forbrugsforeningen”

– regexp = re.compile(‘^600722d{10}$’)

• Laser

– card_name = “Laser”

– regexp = re.compile(‘^(6304|6706|6771|6709)d{8}(d{4}|d{6,7})?$’)

6.3.3 Helpers

• all_credit_cards = [Visa, MasterCard, Discover, AmericanExpress, DinersClub, JCB]

• all_debit_cards = [Switch, Solo, Dankort, Maestro, Forbrugsforeningen, Laser]

• all_cards = all_credit_cards + all_debit_cards
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CHAPTER 7

Gateways

Gateways are the payment processors implemented in Merchant. This is implemented as a class so that it is easy to
extend and create as many gateways as possible.

The base gateway class is billing.gateway.Gateway which has the following methods and attributes.

7.1 Attribute Reference

• test_mode: This boolean attribute signifies if the gateway is in the test mode. By default, it looks up this
value from the MERCHANT_TEST_MODE attribute from the settings file. If the MERCHANT_TEST_MODE
attribute is not found in the settings file, the default value is True indicating that the gateway is in the test mode.
So do not forget to either set the attribute to True in the subclass or through the settings file.

• default_currency: This is the currency in which the transactions are settled ie the currency in which the payment
gateway sends the invoice, transaction reports etc. This does not prevent the developer from charging a customer
in other currencies but the exchange rate conversion has to be manually handled by the developer. This is a string,
for example “USD” for US Dollar.

• supported_countries: This is a list of supported countries that are handled by the payment gateway. This should
contain a list of the country codes as prescribed by the ISO 3166-alpha 2 standard. The billing.utils.countries
contains a mapping of the country names and ISO codes.

• supported_cardtypes: This is a list of supported card types handled by the payment gateway. This should
contain a list of instances of the CreditCard class.

• homepage_url: A string pointing to the URL of the payment gateway. This is just a helper attribute that is
currently not used.

• display_name: A string that contains the name of the payment gateway. Another helper attribute that is currently
not used.

• application_id: An application name or unique identifier for the gateway. Yet another helper attribute not
currently used.

7.2 Method Reference

• validate_card(credit_card): This method validates the supplied card by checking if it is supported by the
gateway (through the supported_cardtypes attribute) and calls the is_valid method of the card and returns a
boolean. if the card is not supported by the gateway, a CardNotSupported exception is raised.
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• service_url: A property that returns the url to which the credit card and other transaction related details are
submitted.

• purchase(money, credit_card, options = None): A method that charges the given card (one-time) for the given
amount money using the options provided. Subclasses have to implement this method.

• authorize(money, credit_card, options = None): A method that authorizes (for a future transaction) the credit
card for the amount money using the options provided. Subclasses have to implement this method.

• capture(money, authorization, options = None): A method that captures funds from a previously authorized
transaction using the options provided. Subclasses have to implement this method.

• void(identification, options = None): A method that nulls/voids/blanks an authorized transaction identified by
identification to prevent a subsequent capture. Subclasses have to implement this method.

• credit(money, identification, options = None): A method that refunds a settled transaction with the transaca-
tion id identification and given options. Subclasses must implement this method.

• recurring(money, creditcard, options = None): A method that sets up a recurring transaction (or a subscrip-
tion). Subclasses must implement this method.

• store(creditcard, options = None): A method that stores the credit card and user profile information on the
payment gateway’s servers for future reference. Subclasses must implement this method.

• unstore(identification, options = None): A method that reverses the store method’s results. Subclasses must
implement this method.

The options dictionary passed to the above methods consists of the following keys:

• order_id: A unique order identification code (usually set by the gateway).

• ip: The IP address of the customer making the purchase. This is required by certain gateways like PayPal.

• customer: The name, customer number, or other information that identifies the customer. Optional.

• invoice: The invoice code/number (set by the merchant).

• merchant: The name or description of the merchant offering the product.

• description: A description of the product or transaction.

• email: The email address of the customer. Required by a few gateways.

• currency: Required when using a currency with a gateway that supports multiple currencies. If not specified,
the value of the default_currency attribute of the gateway instance is used.

• billing_address: A dictionary containing the billing address of the customer. Generally required by gateways
for address verification (AVS) etc.

• shipping_address: A dictionary containing the shipping address of the customer. Required if the merchant
requires shipping of products and where billing address is not the same as shipping address.

The address dictionary for billing_address and shipping_address should have the following keys:

• name: The full name of the customer.

• company: The company name of the customer. Required by a few gateways.

• address1: The primary street address of the customer. Required by many gateways.

• address2: Additional line for the address. Optional.

• city: The city of the customer.

• state: The state of the customer.

• country: The ISO 3166-alpha 2 standard code for the country of the customer.
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• zip: The zip or postal code of the customer.

• phone: The phone number of the customer. Optional.

All the above methods return a standard response dictionary containing the following keys:

• status: Indicating if the transaction is a “SUCCESS” or a “FAILURE“

• response: The response object for the transaction. Please consult the respective gateway’s documentation to
learn more about it.

7.3 Helper functions

• get_gateway(name, *args, **kwargs): A helper function that loads the gateway class by the name and initial-
izes it with the args and kwargs.

7.3. Helper functions 9049
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CHAPTER 8

On-site Processing

Onsite processing refers to the payment mechanism where the customer stays on the merchant website and the authen-
tication is done by the merchant website with the gateway in the background.

Merchant websites need to comply with PCI standards to be able to securely carry out transactions.

On-site processing for payment gateways is implemented by using subclasses of the Gateway class.
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CHAPTER 9

Authorize.Net Gateway

This gateway implements the Authorize.Net Advanced Integration Method (AIM).

9.1 Usage

• Setup a test account with Authorize.Net.

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"authorize_net": {
"LOGIN_ID" : "???",
"TRANSACTION_KEY" : "???"

}
...

}

• Use the gateway instance:

>>> g1 = get_gateway("authorize_net")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(1, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <AuthorizeNetAIMResponse object>}
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CHAPTER 10

Beanstream

Beanstream is a gateway headquartered in Canada and offering payment processing across North America.

Note: You will require the beanstream python package maintained by the community.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• MERCHANT_ID: The merchant id provided by Beanstream. Can be obtained from the account dashboard.

• LOGIN_COMPANY: The company name as visible from the account settings in the dashboard.

• LOGIN_USER: The username used to login to the account dashboard.

• LOGIN_PASSWORD: The password used to login to the account dashboard.

• HASH_ALGORITHM: This is optional but required if you have enabled hashing in account dashboard. The
values may be one of SHA-1 and MD5.

• HASHCODE: If the above attribute is enabled, then set this attribute to the hash value you’ve setup in the account
dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"beanstream": {
"MERCHANT_ID": "???",
"LOGIN_COMPANY": "???",
"LOGIN_USER": "???",
"LOGIN_PASSWORD": "???",
# The below two attributes are optional
"HASH_ALGORITHM": "???",
"HASHCODE": "???",

}
...

}

10.1 Example:

Simple usage:

>>> beanstream = get_gateway("beanstream")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
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number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = beanstream.purchase(1000, credit_card)
>>> resp["response"].resp.approved()
True

# Authorize the card for 1000 USD
>>> resp = beanstream.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = beanstream.capture(900, resp["response"].resp["trnId"])
>>> response["response"].resp.approved()
True

# Void an authorized transaction
>>> beanstream.void(resp["response"].resp["trnId"])
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CHAPTER 11

Bitcoin Gateway

The Bitcoin gateway implements the Bitcoin digital currency.

It is implemented using the JSON-RPC API as described in the Merchant Howto.

Note: The Bitcoin gateway depends on the bitcoin-python library which can be installed from pypi

11.1 Usage

• Add the following attributes to your settings.py:

"bitcoin": {
"RPCUSER": "", # you'll find these settings in your $HOME/.bitcoin/bitcoin.conf
"RPCPASSWORD": "",
"HOST": "",
"PORT": "",
"ACCOUNT": "",
"MINCONF": 1,

},

• Use the gateway instance:

>>> g1 = get_gateway("bitcoin")
>>> addr = g1.get_new_address()
>>> # pass along this address to your customer
>>> # the purchase will only be successful when
>>> # the amount is transferred to the above address
>>> response1 = g1.purchase(100, addr, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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CHAPTER 12

Braintree Payments Server to Server

Braintree Payments Server to Server is a gateway provided by Braintree Payments to services which are willing to
take the burden of PCI compliance. This does not involve any redirects and only Server to Server calls happen in the
background.

Note: You will require the official braintree python package offered by Braintree for this gateway to work.

Settings attributes required for this integration are:

• MERCHANT_ACCOUNT_ID: The merchant account id provided by Braintree. Can be obtained from the account
dashboard.

• PUBLIC_KEY: The public key provided by Braintree through their account dashboard.

• PRIVATE_KEY: The private key provided by Braintree through their account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"braintree_payments": {
"MERCHANT_ACCOUNT_ID": "???",
"PUBLIC_KEY": "???",
"PRIVATE_KEY": "???"

}
...

}

12.1 Example:

Simple usage:

>>> braintree = get_gateway("braintree_payments")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = braintree.purchase(1000, credit_card)
>>> resp["response"].is_success
True
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# Authorize the card for 1000 USD
>>> resp = braintree.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = braintree.capture(900, resp["response"].transaction.id)
>>> response["response"].is_success
True

# Void an authorized transaction
>>> braintree.void(resp["response"].transaction.id)

# Store Customer and Credit Card information in the vault
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

}
>>> resp = braintree.store(credit_card, options = options)

# Unstore a previously stored credit card from the vault
>>> response = braintree.unstore(resp["response"].customer.credit_cards[0].token)
>>> response["response"].is_success
True

# A recurring plan charge
>>> options = {

"customer": {
"name": "John Doe",
"email": "john.doe@example.com",
},

"recurring": {
"plan_id": "test_plan",
"trial_duration": 2,
"trial_duration_unit": "month",
"number_of_billing_cycles": 12,
},

}
>>> resp = braintree.recurring(10, credit_card, options = options)
>>> resp["response"].is_success
True
>>> resp["response"].subscription.number_of_billing_cycles
12
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CHAPTER 13

Chargebee

Chargebee is a SAAS that makes subscription billing easy to handle. They also provide the functionality to plug to
multiple gateways in the backend.

Note: You will require the requests package to get Chargebee to work.

Settings attributes required (optional if you are passing them while initializing the gateway) for this integration are:

• SITE: The name of the Chargebee app (or site as they refer). The URL is generally of the form
“https://{site}.chargebee.com/”.

• API_KEY: This key is provided in your settings dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"chargebee": {
"SITE": "some-test",
"API_KEY": "???",

}
...

}

13.1 Example:

Simple usage:

>>> chargebee = get_gateway("chargebee")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2011,
number="4111111111111111",
verification_value="100")

# Bill the user for 10 USD per month based on a plan called 'monthly'
# The 'recurring' method on the gateway is a mirror to the 'store' method
>>> resp = chargebee.store(credit_card, options = {"plan_id": "monthly"})
>>> resp["response"]["customer"]["subscription"]["id"]
...

# Cancel the existing subscription
>>> response = chargebee.unstore(resp["response"]["customer"]["subscription"]["id"])
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>>> response["response"]["subscription"]["status"]
'cancelled'

# Bill the user for 1000 USD
# Technically, Chargebee doesn't have a one shot purchase.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more
>>> resp = chargebee.purchase(1000, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Purchase"})
>>> resp["response"]["invoice"]["subscription_id"]
...

# Authorize the card for 100 USD
# Technically, Chargebee doesn't have a one shot authorize.
# Create a plan (called 'oneshot' below) that does a recurring
# subscription with an interval of a decade or more and authorizes
# the card for a large amount
>>> resp = chargebee.authorize(100, credit_card,

options = {"plan_id": "oneshot", "description": "Quick Authorize"})

# Capture funds (90 USD) from a previously authorized transaction
>>> response = chargebee.capture(90, resp["response"]["subscription"]["id"])
>>> response["status"]
'SUCCESS'

# Void an authorized transaction
>>> resp = chargebee.void(resp["response"]["invoice"]["subscription_id"])
>>> resp["status"]
'SUCCESS'
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CHAPTER 14

eWay Gateway

The eWay gateway implements the eWay Hosted Payment API.

Note: Since the eWay payment gateway uses SOAP, the API has been implemented using the suds SOAP library for
python. You’ll require it to be able to use this gateway.

14.1 Usage

• Add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"eway": {
"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

• Use the gateway instance:

>>> g1 = get_gateway("eway")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
>>> response1 = g1.purchase(100, cc, options = {...})
>>> response1
{"status": "SUCCESS", "response": <instance>}
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CHAPTER 15

Paylane Gateway

Paylane is a payment processor focussed mainly in Europe.

Note: You will require suds python package to work with the the SOAP interface.

Settings attributes required for this gateway are:

• USERNAME: The username provided by Paylane while signing up for an account.

• PASSWORD: The password you set from the merchant admin panel. Not to be confused with the merchant login
password.

• WSDL (optional): The location of the WSDL file. Defaults to
https://direct.paylane.com/wsdl/production/Direct.wsdl.

• SUDS_CACHE_DIR (optional): The location of the suds cache files. Defaults to /tmp/suds.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"paylane": {
"USERNAME": "???",
"PASSWORD": "???",

}
...

}

15.1 Example:

Simple usage:

>>> paylane = get_gateway("paylane")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = paylane.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS
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# Authorize the card for 1000 USD
>>> resp = paylane.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = paylane.capture(900, resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = paylane.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS
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CHAPTER 16

PayPal Gateway

Note: This gateway is a wrapper to the django-paypal package. Please download it to be able to use the gateway.

The PayPal gateway is an implementation of the PayPal Website Payments Pro product.

16.1 Usage

• Setup a PayPal Website Payments Pro account and obtain the API details.

• Add paypal.standard and paypal.pro (apps from django-paypal) to the INSTALLED_APPS in your settings.py.

• Also add the following attributes to your settings.py:

MERCHANT_TEST_MODE = True # Toggle for live transactions
MERCHANT_SETTINGS = {

"pay_pal": {
"WPP_USER" : "???",
"WPP_PASSWORD" : "???",
"WPP_SIGNATURE" : "???"

}
}

# Since merchant relies on django-paypal
# you have to additionally provide the
# below attributes
PAYPAL_TEST = MERCHANT_TEST_MODE
PAYPAL_WPP_USER = MERCHANT_SETTINGS["pay_pal"]["WPP_USER"]
PAYPAL_WPP_PASSWORD = MERCHANT_SETTINGS["pay_pal"]["WPP_PASSWORD"]
PAYPAL_WPP_SIGNATURE = MERCHANT_SETTINGS["pay_pal"]["WPP_SIGNATURE"]

• Run python manage.py syncdb to get the response tables.

• Use the gateway instance:

>>> g1 = get_gateway("pay_pal")
>>>
>>> cc = CreditCard(first_name= "Test",
... last_name = "User",
... month=10, year=2011,
... number="4222222222222",
... verification_value="100")
>>>
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>>> response1 = g1.purchase(100, cc, options = {"request": request, ...})
>>> response1
{"status": "SUCCESS", "response": <PayPalNVP object>}

Note: The PayPal gateway expects you pass the request object as a part of the options dictionary because the client’s
IP address may be used for fraud detection.
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CHAPTER 17

Stripe Payments

Stripe Payments is a gateway provided by Stripe to services which are willing to take the burden of PCI compliance.
This does not involve any redirects and only Server to Server calls happen in the background.

Note: You will require the official stripe python package offered by Stripe for this gateway to work.

Settings attributes required for this integration are:

• API_KEY: The merchant api key is provided by Stripe. Can be obtained from the account dashboard.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"stripe": {
"API_KEY": "???",
"PUBLISHABLE_KEY": "???", # Used for stripe integration

}
...

}

17.1 Example:

Simple usage:

>>> from billing import get_gateway, CreditCard
>>> stripe = get_gateway("stripe")
>>> credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

# Bill the user for 1000 USD
>>> resp = stripe.purchase(1000, credit_card)
>>> resp["status"]
SUCCESS

# Authorize the card for 1000 USD
>>> resp = stripe.authorize(1000, credit_card)

# Capture funds (900 USD) from a previously authorized transaction
>>> response = stripe.capture(900, resp["response"].id)
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>>> response["status"]
SUCCESS

# Store Customer and Credit Card information in the vault
>>> resp = stripe.store(credit_card)

# Unstore a previously stored credit card from the vault
>>> response = stripe.unstore(resp["response"].id)
>>> response["status"]
SUCCESS

# A recurring plan charge
>>> options = {"plan_id": "gold"}
>>> resp = stripe.recurring(credit_card, options = options)
>>> resp["status"]
SUCCESS
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CHAPTER 18

WePay Payments

WePay.com is a service that lets you accept payments not just from credit cards but also from bank accounts.

WePay works slightly differently and is a hybrid between a Gateway and an Integration but should still be fairly easy
to use.

Note: You will require the official wepay python package offered by WePay.

Settings attributes required for this integration are:

• CLIENT_ID: This attribute refers to the application id that can be obtained from the account dashboard.

• CLIENT_SECRET: This is the secret for the corresponding CLIENT_ID.

• ACCOUNT_ID: Refers to the WePay user account id. If you are accepting payments for yourself, then this
attribute is compulsory. If you are accepting payments for other users (say in a marketplace setup), then it is
optional in the settings.py file but has to be passed in the options dictionary (with the key account_id)
in the views.

• ACCESS_TOKEN: The OAuth2 access token acquired from the user after the installation of the WePay applica-
tion. If you are accepting payments for yourself, then this attribute is compulsory. If you are accepting payments
for other users (say in a marketplace setup), then it is optional in the settings.py file but has to be passed
in the options dictionary (with the key token) in the views.

Settings attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"we_pay": {
"CLIENT_ID": "???",
"CLIENT_SECRET": "???",
"ACCESS_TOKEN": "???",
"ACCOUNT_ID": "???"

}
...

}

18.1 Example:

Simple usage:
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wp = get_gateway("we_pay")
credit_card = CreditCard(first_name="Test", last_name="User",

month=10, year=2012,
number="4242424242424242",
verification_value="100")

def we_pay_purchase(request):
# Bill the user for 10 USD
# Credit card is not required here because the user
# is redirected to the wepay site for authorization
resp = wp.purchase(10, None, {

"description": "Product Description",
"type": "GOODS",
"redirect_uri": "http://example.com/success/redirect/"

})
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["checkout_uri"])
...

# Authorize the card for 1000 USD
def we_pay_authorize(request):

# Authorize the card, the amount is not required.
resp = wp.authorize(None, credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
resp["checkout_id"]
...

# Capture funds from a previously authorized transaction
def we_pay_capture(request):

# No ability to partially capture and hence first argument is None
resp = wp.capture(None, '<authorization_id>')
...

# Refund a transaction
def we_pay_refund(request):

# Refund completely
resp = wp.credit(None, '<checkout_id>')
...
# Refund partially from a transaction charged $15
resp = wp.credit(10, '<checkout_id>')
...

# Store Customer and Credit Card information in the vault
def we_pay_store(request)

resp = wp.store(credit_card, {"customer": {"email": "abc@example.com"}, "billing_address": {"city": ...}})
...

# A recurring plan for $100/month
def we_pay_recurring(request):

options = {"period": "monthly", "start_time": "2012-01-01",
"end_time": "2013-01-01", "auto_recur": "true",
"redirect_uri": "http://example.com/redirect/success/"}

resp = wp.recurring(100, None, options = options)
if resp["status"] == "SUCCESS":

return HttpResponseRedirect(resp["response"]["preapproval_uri"])
...
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CHAPTER 19

Off-site Processing

Off-site processing is the payment mechanism where the customer is redirected to the payment gateways site to com-
plete the transaction and is redirected back to the merchant website on completion.

Since the credit card number and other sensitive details are entered on the payment gateway’s site, the merchant
website may not comply to PCI standards. This mode of payment is recommended when the merchant website is not
in a position to use SSL certificates, not able to guarantee a secure network etc

Off-site processing is generally implemented in merchant through Integrations (name derived from Active Merchant).

19.1 Integration

An Integration much like a Gateway is a Python class. But unlike a Gateway which is used in a view, an Integration
renders a form (usually with hidden fields) through a template tag. An integration may also support asynchronous and
real-time transaction status handling through callbacks or notifiers like the PayPal IPN

Here is a reference of the attributes and methods of the Integration class:

19.1.1 Attributes

• fields: Dictionary of form fields that have to be rendered in the template.

• test_mode: Signifies if the integration is in a test mode or production. The default value for this is taken from
the MERCHANT_TEST_MODE setting attribute.

• display_name: A human readable name that is generally used to tag the errors when the integration is not
correctly configured.

19.1.2 Methods

• __init__(options={}): The constructor for the Integration. The options dictionary if present overrides the default
items of the fields attribute.

• add_field(key, value): A method to modify the fields attribute.

• add_fields(fields): A method to update the fields attribute with the fields dictionary specified.

• service_url: The URL on the form where the fields data is posted. Overridden by implementations.

• get_urls: A method that returns the urlpatterns for the notifier/ callback. This method is modified by implemen-
tations.
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• urls: A property that returns the above method.

19.1.3 Helper Function

Very much like Gateways, Integrations have a method of easily referencing the corresponding integration class through
the get_integration helper function.

• get_integration(integration_name, *args, **kwargs): Returns the Integration class for the corresponding
integration_name.

Example:

>>> from billing import get_integration
>>> get_integration("pay_pal")
<billing.integrations.pay_pal_integration.PayPalIntegration object at 0xa57e12c>
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CHAPTER 20

PayPal Website Payments Standard

PayPal Website Payments Standard (PWS) is an offsite payment processor. This method of payment is implemented
in merchant as a wrapper on top of django-paypal. You need to install the package to be able to use this payment
processor.

For a list of the fields and settings attribute expected, please refer to the PWS and django-paypal documentation.

After a transaction, PayPal pings the notification URL and all the data sent is stored in the PayPalIPN model instance
that can be viewed from the django admin.

20.1 Test or Live Mode

By default the form renders in test mode with POST against sandbox.paypal.com. Add following to you set-
tings.py to put the form into live mode:

### Django Merchant
MERCHANT_TEST_MODE = False
PAYPAL_TEST = MERCHANT_TEST_MODE

Don’t forget to add the settings attributes from django-paypal:

INSTALLED_APPS = (
...,
'paypal.standard.pdt',
...)

MERCHANT_SETTINGS = {
...,
'pay_pal': {

"WPP_USER" : '...',
"WPP_PASSWORD" : '...',
"WPP_SIGNATURE" : '...',
"RECEIVER_EMAIL" : '...',
# Below attribute is optional
"ENCRYPTED": True

}
...}

PAYPAL_RECEIVER_EMAIL = MERCHANT_SETTINGS['pay_pal']['RECEIVER_EMAIL']
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20.2 Example

In urls.py:

from billing import get_integration
pay_pal = get_integration("pay_pal")
urlpatterns += patterns('',

(r'^paypal-ipn-handler/', include(pay_pal.urls)),
)

In views.py:

>>> from billing import get_integration
>>> pay_pal = get_integration("pay_pal")
>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name": "Test Item",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... "amount": 100})
>>> return render_to_response("some_template.html",
... {"obj": pay_pal},
... context_instance=RequestContext(request))

You can also implement a shopping cart by adding multiple items with keys like item_name_1, amount_1 etc, for
e.g:

>>> pay_pal.add_fields({
... "business": "paypalemail@somedomain.com",
... "item_name_1": "Test Item 1",
... "amount_1": "10",
... "item_name_2": "Test Item 2",
... "amount_2": "20",
... "invoice": "UID",
... "notify_url": "http://example.com/paypal-ipn-handler/",
... "return_url": "http://example.com/paypal/",
... "cancel_return": "http://example.com/paypal/unsuccessful/",
... })

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form action="https://www.sandbox.paypal.com/cgi-bin/webscr" method="post">
<input type="hidden" name="business" value="paypalemail@somedomain.com" id="id_business" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="item_name" value="Test Item" id="id_item_name" />
<input type="hidden" name="notify_url" value="http://example.com/paypal-ipn-handler/" id="id_notify_url" />
<input type="hidden" name="cancel_return" value="http://example.com/paypal/unsuccessful" id="id_cancel_return" />
<input type="hidden" name="return" value="http://example.com/paypal/" id="id_return_url" />
<input type="hidden" name="invoice" value="UID" id="id_invoice" />
<input type="hidden" name="cmd" value="_xclick" id="id_cmd" />
<input type="hidden" name="charset" value="utf-8" id="id_charset" />
<input type="hidden" name="currency_code" value="USD" id="id_currency_code" />
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<input type="hidden" name="no_shipping" value="1" id="id_no_shipping" />
<input type="image" src="https://www.sandbox.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" border="0" name="submit" alt="Buy it Now" />

</form>
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CHAPTER 21

WorldPay

WorldPay, provides a hosted payments page for offsite transactions for merchants who cannot guarantee PCI compli-
ance. The documentation for the service is available here.

After a transaction, WorldPay pings the notification URL and all the data sent is stored in the RBSResponse model
instance that can be viewed from the django admin.

The settings attribute required for this integration are:

• MD5_SECRET_KEY: The MD5 secret key chosen by the user while signing up for the WorldPay Hosted
Payments Service.

Settings Attributes:

MERCHANT_TEST_MODE = True # Toggle for live
MERCHANT_SETTINGS = {

"world_pay": {
"MD5_SECRET_KEY": "???"

}
...

}

21.1 Example

In urls.py:

world_pay = get_integration("world_pay")
urlpatterns += patterns('',

(r'^world_pay/', include(world_pay.urls)),
# You'll have to register /world_pay/rbs-notify-handler/ in the
# WorldPay admin dashboard for the notification URL

)

In views.py:

>>> from billing import get_integration
>>> world_pay = get_integration("world_pay")
>>> world_pay.add_fields({
... "instId": "WP_ID",
... "cartId": "TEST123",
... "amount": 100,
... "currency": "USD",
... "desc": "Test Item",
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... })
>>> return render_to_response("some_template.html",
... {"obj": world_pay},
... context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration obj %}

Template renders to something like below:

<form method='post' action='https://select-test.wp3.rbsworldpay.com/wcc/purchase'>
<input type="hidden" name="futurePayType" id="id_futurePayType" />
<input type="hidden" name="intervalUnit" id="id_intervalUnit" />
<input type="hidden" name="intervalMult" id="id_intervalMult" />
<input type="hidden" name="option" id="id_option" />
<input type="hidden" name="noOfPayments" id="id_noOfPayments" />
<input type="hidden" name="normalAmount" id="id_normalAmount" />
<input type="hidden" name="startDelayUnit" id="id_startDelayUnit" />
<input type="hidden" name="startDelayMult" id="id_startDelayMult" />
<input type="hidden" name="instId" value="WP_ID" id="id_instId" />
<input type="hidden" name="cartId" value="TEST123" id="id_cartId" />
<input type="hidden" name="amount" value="100" id="id_amount" />
<input type="hidden" name="currency" value="USD" id="id_currency" />
<input type="hidden" name="desc" value="Test Item" id="id_desc" />
<input type="hidden" name="testMode" value="100" id="id_testMode" />
<input type="hidden" name="signatureFields" value="instId:amount:cartId" id="id_signatureFields" />
<input type="hidden" name="signature" value="6c165d7abea54bf6c1ce19af60359a59" id="id_signature" />
<input type='submit' value='Pay through WorldPay'/>

</form>
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CHAPTER 22

Amazon Flexible Payment Service

Amazon FPS, is a service that allows for building very flexible payment systems. The service can be classified as a
part Gateway and part Integration (offsite processor). This is because the customer is redirected to the Amazon site
where he authorizes the payment and after this the customer is redirected back to the merchant site with a token that is
used by the merchant to transact with the customer. In plain offsite processors, the authorization and transaction take
place in one shot almost simultaneously.

Since the service isn’t conventional (though very flexible), implementing FPS in merchant takes a couple of steps
more.

The documentation for the service is available at Amazon FPS Docs.

Note: This integration has a dependency on boto, a popular AWS library for python.

Settings attributes required for this integration are:

• AWS_ACCESS_KEY: The Amazon AWS access key available from the user’s AWS dashboard.

• AWS_SECRET_ACCESS_KEY: The Amazon AWS secret access key also available from the user’s dashboard.
Shouldn’t be distributed to anyone.

Settings attributes:

MERCHANT_TEST_MODE = True
MERCHANT_SETTINGS = {

"amazon_fps": {
"AWS_ACCESS_KEY": "???",
"AWS_SECRET_ACCESS_KEY": "???"

}
}

Here are the methods and attributes implemented on the AmazonFpsIntegration class:

• __init__(options = {}): The constructor takes a dictionary of options that are used to initialize the
underlying FPSConnection that is bundled with boto.

• service_url: A property that returns the API Endpoint depending on whether the the integration is in
test_mode or not.

• link_url: A property that returns the link which redirects the customer to the Amazon Payments site to
authorize the transaction.

• purchase(amount, options={}): The method that charges a customer right away for the amount
amount after receiving a successful token from Amazon. The options dictionary is generated from the
return_url on successful redirect from the Amazon payments page. This method returns a dictionary
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with two items, status representing the status and response representing the response as described by
boto.fps.response.FPSResponse.

• authorize(amount, options={}): Similar to the purchase method except that it reserves the pay-
ment and doesn’t not charge until a capture (settle) is not called. The response is the same as that of
purchase.

• capture(amount, options={}): Captures funds from an authorized transaction. The response is the
same as the above two methods.

• credit(amount, options={}): Refunds a part of full amount of the transaction.

• void(identification, options={}): Cancel/Null an authorized transaction.

• fps_ipn_handler: A method that handles the asynchronous HTTP POST request from the Amazon IPN
and saves into the AmazonFPSResponse model.

• fps_return_url: This method verifies the source of the return URL from Amazon and directs to the trans-
action.

• transaction: This is the main method that charges/authorizes funds from the customer. This method has to
be subclassed to implement the logic for the transaction on return from the Amazon Payments page.

22.1 Example

In any app that is present in the settings.INSTALLED_APPS, subclass the AmazonFpsIntegration
and implement the transaction method. The file should be available under
<app>/integrations/<integration_name>_integration.py:

class FpsIntegration(AmazonFpsIntegration):
# The class name is based on the filename.
# So if the files exists in <app>/integrations/fps_integration.py
# then the class name should be FpsIntegration
def transaction(self, request):

# Logic to decide if the user should
# be charged immediately or funds
# authorized and then redirect the user
# Below is an example:
resp = self.purchase(10, {...})
if resp["status"] == "Success":

return HttpResponseRedirect("/success/")
return HttpResponseRedirect("/failure/")

In urls.py:

from billing import get_integration
amazon_fps = get_integration("fps")
urlpatterns += patterns('',

(r'^amazon_fps/', include(amazon_fps.urls)),
# You'll have to register /amazon_fps/fps-notify-handler/ in the
# Amazon FPS admin dashboard for the notification URL

)

In views.py:

from billing import get_integration
def productPage(request):

amazon_fps = get_integration("fps")
url_scheme = "http"
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if request.is_secure():
url_scheme = "https"

domain = RequestSite(request).domain
fields = {"transactionAmount": "100",

"pipelineName": "SingleUse",
"paymentReason": "Merchant Test",
"paymentPage": request.build_absolute_uri(),
# Send the correct url where the redirect should happen
"returnURL": "%s://%s%s" % (url_scheme,

domain,
reverse("fps_return_url")),

}
# You might want to save the fields["callerReference"] that
# is auto-generated in the db or session to uniquely identify
# this user (or use the user id as the callerReference) because
# amazon passes this callerReference back in the return URL.
amazon_fps.add_fields(fields)
return render_to_response("some_template.html",

{"fps": amazon_fps},
context_instance=RequestContext(request))

In some_template.html:

{% load render_integration from billing_tags %}
{% render_integration fps %}

The above template renders the following code:

<p><a href="https://authorize.payments-sandbox.amazon.com/cobranded-ui/actions/start?callerKey=AKIAI74UIJQ37QS6XLTA&callerReference=5d37ac69-82ac-4bb1-98a4-18c3f9ff15f4&paymentReason=Merchant%20Test&pipelineName=SingleUse&returnURL=http%3A%2F%2Fmerchant.agiliq.com%2Ffps%2Ffps-return-url%2F&signature=wh9PSXAyKfPKizPL%2FRdrYbb24XsoE0efrtMGQBBSs3k%3D&signatureMethod=HmacSHA256&signatureVersion=2&transactionAmount=100"><img src="http://g-ecx.images-amazon.com/images/G/01/cba/b/p3.gif" alt="Amazon Payments" /></a>

22.1. Example 9083



Merchant Documentation Documentation, Release 0.09a

9084 Chapter 22. Amazon Flexible Payment Service



CHAPTER 23

Braintree Payments Transparent Redirect

Braintree Payments Transparent Redirect is a service offered by Braintree Payments to reduce the complexity of PCI
compliance.

Note: This integration makes use of the official braintree python package offered by Braintree Payments. Please
install it before you use this integration.

Refer to the Braintree Payments Server to Server Gateway for the settings attributes.

Here are the methods and attributes implemented on the BraintreePaymentsIntegration class:

• __init__(self, options=None): The constructor method that configures the Braintree environment
setting it either to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• service_url(self): A property that provides the URL to which the Transparent Redirect form is submit-
ted.

• get_urls(self): The method sets the url to which Braintree redirects after the form submission is success-
ful. This method is generally mapped directly in the urls.py.

from billing import get_integration

braintree = get_integration("braintree_payments")

urlpatterns += patterns('',
(r'^braintree/', include(braintree.urls)),

)

• braintree_notify_handler(self, request): The view method that handles the confirmation of
the transaction after successful redirection from Braintree.

• braintree_success_handler(self, request, response): If the transaction is successful,
the braintree_notify_handler calls the braintree_success_handler which renders the
billing/braintree_success.html with the response object. The response object is a standard
braintree result described here.

• braintree_failure_handler(self, request, response): If the transaction fails, the
braintree_notify_handler calls the braintree_failure_handler which renders the
billing/braintree_error.html with the response which is a standar braintree error object.

• generate_tr_data(self): The method that calculates the tr_data to prevent a form from being tampered
post-submission.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.braintree_payments_form) and populates the initial data with the self.fields
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(added through either the add_fields or add_field methods) and tr_data.

23.1 Example:

In the views.py:

braintree_obj = get_integration("braintree_payments")
# Standard braintree fields
fields = {"transaction": {

"order_id": "some_unique_id",
"type": "sale",
"options": {

"submit_for_settlement": True
},

},
"site": "%s://%s" %("https" if request.is_secure() else "http",

RequestSite(request).domain)
}

braintree_obj.add_fields(fields)
return render_to_response("some_template.html",

{"bp": braintree_obj},
context_instance=RequestContext(request))

In the urls.py:

braintree_obj = get_integration("braintree_payments")
urlpatterns += patterns('',

(r'^braintree/', include(braintree.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration bp %}
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CHAPTER 24

Stripe Payment Integration

Stripe Payment Integration is a service offered by Stripe Payment to reduce the complexity of PCI compliance.

Note: This integration makes use of the official stripe python package offered by Stripe Payments. Please install it
before you use this integration.

Refer to the Stripe Payments Gateway for the settings attributes.

Here are the methods and attributes implemented on the StripeIntegration class:

• __init__(self, options=None): The constructor method that configures the stripe setting

• get_urls(self): The method sets the url to which the token is sent after the it is obtained from Stripe. This
method is generally mapped directly in the urls.py.

from billing import get_integration

stripe_obj = get_integration("stripe")

urlpatterns += patterns('',
(r'^stripe/', include(stripe_obj.urls)),

)

• transaction(self, request): The method that receives the Stripe Token after successfully validating
with the Stripe servers. Needs to be subclassed to include the token transaction logic.

• generate_form(self): The method that generates and returns the form (present in
billing.forms.stripe_form)

24.1 Example:

In <some_app>/integrations/stripe_example_integration.py:

from billing.integrations.stripe_integration import StripeIntegration

class StripeExampleIntegration(StripeIntegration):
def transaction(self, request):

# The token is received in the POST request
resp = self.gateway.purchase(100, request.POST["stripeToken"])
if resp["status"] == "SUCCESS":

# Redirect if the transaction is successful
...

else:

9087

https://stripe.com
http://pypi.python.org/pypi/stripe/


Merchant Documentation Documentation, Release 0.09a

# Transaction failed
...

In the views.py:

stripe_obj = get_integration("stripe_example")
return render_to_response("some_template.html",

{"stripe_obj": stripe_obj},
context_instance=RequestContext(request))

In the urls.py:

stripe_obj = get_integration("stripe_example")
urlpatterns += patterns('',

(r'^stripe/', include(stripe_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration stripe_obj %}
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CHAPTER 25

eWAY Payment Integration

The eWAY integration functionality interfaces with eWAY’s Merchant Hosted Payments facility. Their service makes
it extremely easy to be PCI-DSS compliant by allowing you to never receive customer credit card information.

Note: This integration requires the suds package. Please install it before you use this integration.

The basic data flow is as follows:

1. Request an access code from eWAY.

2. Create an HTML form with the access code and user credit card fields.

3. Encourage the user to submit the form to eWAY and they’ll be redirected back to your site.

4. Use the access code to ask eWAY if the transaction was successful.

You must add the following to project’s settings:

MERCHANT_SETTINGS = {
"eway": {

"CUSTOMER_ID": "???",
"USERNAME": "???",
"PASSWORD": "???",

}
}

The integration class is used to request an access code and also to check its success after the redirect:

class EwayIntegration(access_code=None)
Creates an integration object for use with eWAY.

access_code is optional, but must be configured prior to using check_transaction().

request_access_code(payment, redirect_url, customer=None, billing_country=None,
ip_address=None)

Requests an access code from eWAY to use with a transaction.

Parameters

• payment (dict) – Information about the payment

• redirect_url (unicode) – URL to redirect the user to after payment

• customer (dict) – Customer related information

• billing_country (unicode alpha-2 country code (as per ISO 3166)) – Customer’s
billing country
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• ip_address (unicode) – Customer’s IP address

Returns (access_code, customer)

The integration is automatically updated with the returned access code.

Supported keys in customer:

Key Notes
token_customer_id
save_token
reference
title required for save_token
first_name required for save_token
last_name required for save_token
company_name
job_description
street
city
state
postal_code
country required for save_token
email
phone
mobile
comments
fax
url

Supported keys in payment:

Key Notes
total_amount required (must be cents)
invoice_number
invoice_description
invoice_reference

To add extra security, it’s a good idea to specify ip_address. The value is given to eWAY to allow them to
ensure that the POST request they receive comes from the given address. E.g.:

def payment(request):
integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(..., ip_address=request.META["REMOTE_ADDR"])
# ...

Returned value

The returned value is a tuple (access_code, customer). access_code is the access code granted by
eWAY that must be included in the HTML form, and is used to request transaction status after the redirect.

customer is a dict containing information about the customer. This is particularly useful if you make use of
save_token and token_customer_id to save customer details on eWAY’s servers. Keys in the dict are:

•token_customer_id

•save_token

•reference

•title

9090 Chapter 25. eWAY Payment Integration



Merchant Documentation Documentation, Release 0.09a

•first_name

•last_name

•company_name

•job_description

•street

•city

•state

•postal_code

•country – e.g. au

•email

•phone

•mobile

•comments

•fax

•url

•card_number – e.g. 444433XXXXXX1111

•card_name

•card_expiry_month

•card_expiry_year

check_transaction()
Check with eWAY what happened with a transaction.

This method requires access_code has been configured.

Returns dict

Key Example
access_code
authorisation_code "198333"
response_code "00"
response_message "Transaction Approved" or None
option_1 "a1b2c3"
option_2
option_3
invoice_number "19832261"
invoice_reference "19832261-AA12/1"
total_amount "1000"
transaction_id "7654321"
transaction_status True
error_message
token_customer_id "1234567890123456"
beagle_score 10.23
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25.1 Example:

# views.py
from billing import get_integration
from django.shortcuts import get_object_or_404

def payment(request, cart_pk):
# Pretend some 'Order' model exists with a 'total_price' in dollars
order = get_object_or_404(Order, pk=cart_pk)

integration = get_integration("eway_au")
access_code, customer = integration.request_access_code(

customer={"first_name": "Bradley", "last_name": "Ayers"},
payment={"total_amount": order.total_price * 100},
return_url=reverse(payment_done))

request.session["eway_access_code"] = integration.access_code
return render(request, "payment.html", {"integration": integration})

def payment_done(request, cart_pk):
order = get_object_or_404(Order, pk=cart_pk)
access_code = request.session["access_code"]
integration = get_integration("eway_au", access_code=access_code)
# Retrieve transaction status from eWAY
status = integration.check_transaction()
if status["response_code"] in ("00", "08", "11"):

order.is_paid = True
order.save()
template = "receipt.html"

else:
template = "payment_failed.html"

return render(request, template, {"status": status})

In order for eWAY to process the transaction, the user must submit the payment HTML form directly to eWAY. The
helper tag {% eway %} makes this trivial:

{% load render_integration from billing_tags %}
{% render_integration integration %}

For a more configurable form, use the following pattern:

<form method="post" action="{{ integration.service_url }}">
{{ integration.generate_form.as_p }}
<input type="submit"/>

</form>
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CHAPTER 26

Authorize.Net Direct Post Method

Authorize.Net Direct Post Method is a service offered by Authorize.Net to reduce the complexity of PCI compliance.

Here are the following settings attributes that are required:

• LOGIN_ID: The Login id provided by Authorize.Net. Can be obtained from the dashboard.

• TRANSACTION_KEY: The Transaction key is used to sign the generated form with a shared key to validate
against form tampering.

• MD5_HASH: This attribute is used to generate a hash that is verified against the hash sent by Authorize.Net to
confirm the request’s source.

Here are the methods and attributes implemented on the AuthorizeNetDpmIntegration class:

• __init__(self): The constructor that configures the Authorize.Net Integration environment setting it either
to production or sandbox mode based on the value of settings.MERCHANT_TEST_MODE.

• form_class(self): Returns the form class that is used to generate the form. Defaults to
billing.forms.authorize_net_forms.AuthorizeNetDPMForm.

• generate_form(self): Renders the form and generates some precomputed field values.

• service_url(self): Returns the Authorize.net url to be set on the form.

• verify_response(self, request): Verifies if the relay response originated from Authorize.Net.

• get_urls(self): The method sets the url to which Authorize.Net sends a relay response, redirects on a
success or failure.

from billing import get_integration

integration = get_integration("authorize_net_dpm")

urlpatterns += patterns('',
(r'^authorize_net/', include(integration.urls)),

)

• authorize_net_notify_handler(self, request): The view method that handles the verification
of the response, firing of the signal and sends out the redirect snippet to Authorize.Net.

• authorize_net_success_handler(self, request): The method that renders the
billing/authorize_net_success.html.

• authorize_net_failure_handler(self, request): The method that renders the
billing/authorize_net_failure.html.
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26.1 Example:

In the views.py:

int_obj = get_integration("authorize_net_dpm")
fields = {'x_amount': 1,

'x_fp_sequence': datetime.datetime.now().strftime('%Y%m%d%H%M%S'),
'x_fp_timestamp': datetime.datetime.utcnow().strftime('%s'),
'x_recurring_bill': 'F',

}
int_obj.add_fields(fields)
return render_to_response("some_template.html",

{"adp": int_obj},
context_instance=RequestContext(request))

In the urls.py:

int_obj = get_integration("authorize_net_dpm")
urlpatterns += patterns('',

(r'^authorize_net/', include(int_obj.urls)),
)

In the template:

{% load render_integration from billing_tags %}
{% render_integration adp %}
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CHAPTER 27

Signals

The signals emitted by Merchant are:

• transaction_was_successful(sender, type=..., response=...): This signal is dispatched when a payment is suc-
cessfully transacted. The sender is the object which has dispatched the signal. type is the kind of transaction.
Current choices for type are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success. Please consult the individual gateway docs
for the response object.

• transaction_was_unsuccessful(sender, type=..., response=...): This signal is dispatched when a payment fails.
The sender is the object which has dispatched the signal. type is the kind of transation. Current choices for type
are:

– purchase

– authorize

– capture

– credit

– void

– store

– unstore

response is the actual response object that is sent after the success.

Note: Some gateways are implemented to raise an error on failure. This exception may be passed as the
response object. Please consult the docs to confirm.
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CHAPTER 28

Writing a new gateway

Writing a new gateway for Merchant is very easy. Here are the steps to follow to write a new gateway:

• Create a new gateway file under the billing.gateways module which should follow this naming convention:

<gateway_name>_gateway.py

So for example, PayPal would have pay_pal_gateway.py. Similarly, Authorize.Net, would have autho-
rize_net_gateway.py.

• Create a class in this file with the following name:

class GatewayNameGateway(Gateway):
...

So for PayPal, it would be PayPalGateway and for Authorize.Net, it would be AuthorizeNetGateway.

• Implement all or any of following methods in the class:

def purchase(self, money, credit_card, options = None):
...

def authorize(self, money, credit_card, options = None):
...

def capture(self, money, authorization, options = None):
...

def void(self, identification, options = None):
...

def credit(self, money, identification, options = None):
...

def recurring(self, money, creditcard, options = None):
...

def store(self, creditcard, options = None):
...

def unstore(self, identification, options = None):
...
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CHAPTER 29

Customizing Merchant

While we make all attempts to cover most of the functionality of the payment processors but may fall short sometimes.
There is absolutely no need to worry as the gateway and integration objects are extensible.

Merchant looks for gateways and integration objects under every INSTALLED_APPS in settings.py. So it is
possible for you to write your custom or modified objects within your app without having to patch the merchant code.

Note: Most of what is written below will also be applicable for gateways and you will have to replace instances of
integration with gateway.

Suppose you want to extend the Braintree Payments Integration, to render a different template on success instead of
the default billing/braintree_success.html.

Here is the process:

• In any of the settings.INSTALLED_APPS, create an integrations module (in layman’s term an
integrations directory with an __init__.py file under that directory).

• Create a file in that integrations directory that follows the convention below:

<integration_name>_integration.py

Let us name the modified integration as modified_bp, then the filename would be:

modified_bp_integration.py

and the Integration class name in that file as ModifiedBpIntegration.

Note: The naming of the file and class follows a simple rule. The filename is split on underscores and each
element of the split sequence is capitalized to obtain the class name.

So in our example, in the modified_bp_integration.py:

class ModifiedBpIntegration(BraintreePaymentsIntegration):
def braintree_success_handler(self, request, response):

return render_to_response("my_new_success.html",
{"resp": response},
context_instance=RequestContext(request))

• Then use the new integration in your code just as you would for a built-in integration:

>>> bp_obj = get_integration("modified_bp")
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CHAPTER 30

Contributing to Merchant

While there is no requirement for you to contribute your new gateway code or changes back to the upstream project,
you can play a good samaritan by contributing back to the project and helping scores of people.

Here are the steps to follow to contribute back to Merchant:

• Fork the project from it’s github page.

• Make the changes in your fork.

• File an issue at the github page and enclose a pull request.

Note: If you want to include a new gateway, we request you to include a few tests (probably using the current
tests as a template).

• Don’t forget to add yourself to the CONTRIBUTORS.txt file before opening an issue.
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CHAPTER 31

Changes

31.1 0.4 (upcoming)

• Added python3 support

• Removed google checkout

31.2 0.3

• Django 1.7 suport (potentially backwards incompatible changes)

• Updated the example requirements.txt

31.3 0.2

• Unit tests are skipped unless the corresponding gateways are configured

• Bugfix - Use settings.AUTH_USER_MODEL instead of get_user_model

• Demo - fill up initial data for all gateways

31.4 0.1

• Added PIN payments support

31.5 0.09

• Removed Samurai gateway and integration

31.6 0.08

• Added bitcoin backend

• Bugfixes to eWay, paypal integration and authorize.net
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• Google Checkout shipping, tax rate and private data support

• Changes to Amazon FPS to work with latest boto. Addition of new fields to the FPS response model. A
backwards incompatible change

• Made merchant django v1.5 compatible

• Fixes in the chargebee gateway broken by changes in the ‘requests’ api

• Changes to the example to prevent empty forms from raising a Server Error

31.7 0.07

• Added Chargebee support

• Added Beanstream gateway

31.8 0.06

• Added WePay gateway

• Added Authorize.Net Direct Post Method integration

31.9 0.05

• Added Paylane gateway support.

31.10 0.04

• Backwards incompatible version.

• Changes in the settings attributes. Now there is a single attribute for storing the configuration of all gateways
and integrations. Check the docs for details.

• Changed the usage of the template tags. Refer the docs for details.

• Added a display_name to the integration object. Shouldn’t affect users.

31.11 0.03

• Added support for Stripe and Samurai gateways and integrations.

31.12 0.02

• Added a setup.py and uploaded the package to pypi
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31.13 0.01

• Initial commit.

• Overview

• Install Merchant

• Credit Card

• Gateways

– On-site Processing

* Authorize.Net

* Braintree Payments Server to Server

* eWay

* PayPal

* Stripe Payments

* Paylane

* WePay

* Beanstream

* Chargebee

* Bitcoin

* Global Iris

– Off-site Processing

* PayPal

* Google Checkout

* RBS WorldPay

* Amazon FPS

* Braintree Payments Transparent Redirect

* Stripe

* eWAY

* Authorize.Net Direct Post Method

* Global Iris RealMPI

• Signals

• Writing your own gateway

• Customizing the inbuilt Gateway/Integrations

• Contributing to Merchant

• Changelist

31.13. 0.01 9105



Merchant Documentation Documentation, Release 0.09a

9106 Chapter 31. Changes



CHAPTER 32

Indices and tables

• genindex

• modindex

• search

9107



Merchant Documentation Documentation, Release 0.09a

9108 Chapter 32. Indices and tables



Index

C
check_transaction() (built-in function), 42, 76, 109, 143,

177, 211, 244, 278, 312, 346, 379, 413, 447,
481, 514, 548, 582, 616, 649, 683, 717, 751,
784, 818, 852, 886, 919, 953, 987, 1021, 1054,
1088, 1122, 1156, 1189, 1223, 1257, 1291,
1324, 1358, 1392, 1426, 1459, 1493, 1527,
1561, 1594, 1628, 1662, 1696, 1729, 1763,
1797, 1831, 1864, 1898, 1932, 1966, 1999,
2033, 2067, 2101, 2134, 2168, 2202, 2236,
2269, 2303, 2337, 2371, 2404, 2438, 2472,
2506, 2539, 2573, 2607, 2641, 2674, 2708,
2742, 2776, 2809, 2843, 2877, 2911, 2944,
2978, 3012, 3046, 3079, 3113, 3147, 3181,
3214, 3248, 3282, 3316, 3349, 3383, 3417,
3451, 3484, 3518, 3552, 3586, 3619, 3653,
3687, 3721, 3754, 3788, 3822, 3856, 3889,
3923, 3957, 3991, 4024, 4058, 4092, 4126,
4159, 4193, 4227, 4261, 4294, 4328, 4362,
4396, 4429, 4463, 4497, 4531, 4564, 4598,
4632, 4666, 4699, 4733, 4767, 4801, 4834,
4868, 4902, 4936, 4969, 5003, 5037, 5071,
5104, 5138, 5172, 5206, 5239, 5273, 5307,
5341, 5374, 5408, 5442, 5476, 5509, 5543,
5577, 5611, 5644, 5678, 5712, 5746, 5779,
5813, 5847, 5881, 5914, 5948, 5982, 6016,
6049, 6083, 6117, 6151, 6184, 6218, 6252,
6286, 6319, 6353, 6387, 6421, 6454, 6488,
6522, 6556, 6589, 6623, 6657, 6691, 6724,
6758, 6792, 6826, 6859, 6893, 6927, 6961,
6994, 7028, 7062, 7096, 7129, 7163, 7197,
7231, 7264, 7298, 7332, 7366, 7399, 7433,
7467, 7501, 7534, 7568, 7602, 7636, 7669,
7703, 7737, 7771, 7804, 7838, 7872, 7906,
7939, 7973, 8007, 8041, 8074, 8108, 8142,
8176, 8209, 8243, 8277, 8311, 8344, 8378,
8412, 8446, 8479, 8513, 8547, 8581, 8614,
8648, 8682, 8716, 8749, 8783, 8817, 8851,
8884, 8919, 8954, 8990, 9026, 9091

E
EwayIntegration (built-in class), 40, 74, 107, 141, 175,

209, 242, 276, 310, 344, 377, 411, 445, 479,
512, 546, 580, 614, 647, 681, 715, 749, 782,
816, 850, 884, 917, 951, 985, 1019, 1052, 1086,
1120, 1154, 1187, 1221, 1255, 1289, 1322,
1356, 1390, 1424, 1457, 1491, 1525, 1559,
1592, 1626, 1660, 1694, 1727, 1761, 1795,
1829, 1862, 1896, 1930, 1964, 1997, 2031,
2065, 2099, 2132, 2166, 2200, 2234, 2267,
2301, 2335, 2369, 2402, 2436, 2470, 2504,
2537, 2571, 2605, 2639, 2672, 2706, 2740,
2774, 2807, 2841, 2875, 2909, 2942, 2976,
3010, 3044, 3077, 3111, 3145, 3179, 3212,
3246, 3280, 3314, 3347, 3381, 3415, 3449,
3482, 3516, 3550, 3584, 3617, 3651, 3685,
3719, 3752, 3786, 3820, 3854, 3887, 3921,
3955, 3989, 4022, 4056, 4090, 4124, 4157,
4191, 4225, 4259, 4292, 4326, 4360, 4394,
4427, 4461, 4495, 4529, 4562, 4596, 4630,
4664, 4697, 4731, 4765, 4799, 4832, 4866,
4900, 4934, 4967, 5001, 5035, 5069, 5102,
5136, 5170, 5204, 5237, 5271, 5305, 5339,
5372, 5406, 5440, 5474, 5507, 5541, 5575,
5609, 5642, 5676, 5710, 5744, 5777, 5811,
5845, 5879, 5912, 5946, 5980, 6014, 6047,
6081, 6115, 6149, 6182, 6216, 6250, 6284,
6317, 6351, 6385, 6419, 6452, 6486, 6520,
6554, 6587, 6621, 6655, 6689, 6722, 6756,
6790, 6824, 6857, 6891, 6925, 6959, 6992,
7026, 7060, 7094, 7127, 7161, 7195, 7229,
7262, 7296, 7330, 7364, 7397, 7431, 7465,
7499, 7532, 7566, 7600, 7634, 7667, 7701,
7735, 7769, 7802, 7836, 7870, 7904, 7937,
7971, 8005, 8039, 8072, 8106, 8140, 8174,
8207, 8241, 8275, 8309, 8342, 8376, 8410,
8444, 8477, 8511, 8545, 8579, 8612, 8646,
8680, 8714, 8747, 8781, 8815, 8849, 8882,
8917, 8952, 8988, 9024, 9089

9109



Merchant Documentation Documentation, Release 0.09a

R
request_access_code() (built-in function), 40, 74, 107,

141, 175, 209, 242, 276, 310, 344, 377, 411,
445, 479, 512, 546, 580, 614, 647, 681, 715,
749, 782, 816, 850, 884, 917, 951, 985, 1019,
1052, 1086, 1120, 1154, 1187, 1221, 1255,
1289, 1322, 1356, 1390, 1424, 1457, 1491,
1525, 1559, 1592, 1626, 1660, 1694, 1727,
1761, 1795, 1829, 1862, 1896, 1930, 1964,
1997, 2031, 2065, 2099, 2132, 2166, 2200,
2234, 2267, 2301, 2335, 2369, 2402, 2436,
2470, 2504, 2537, 2571, 2605, 2639, 2672,
2706, 2740, 2774, 2807, 2841, 2875, 2909,
2942, 2976, 3010, 3044, 3077, 3111, 3145,
3179, 3212, 3246, 3280, 3314, 3347, 3381,
3415, 3449, 3482, 3516, 3550, 3584, 3617,
3651, 3685, 3719, 3752, 3786, 3820, 3854,
3887, 3921, 3955, 3989, 4022, 4056, 4090,
4124, 4157, 4191, 4225, 4259, 4292, 4326,
4360, 4394, 4427, 4461, 4495, 4529, 4562,
4596, 4630, 4664, 4697, 4731, 4765, 4799,
4832, 4866, 4900, 4934, 4967, 5001, 5035,
5069, 5102, 5136, 5170, 5204, 5237, 5271,
5305, 5339, 5372, 5406, 5440, 5474, 5507,
5541, 5575, 5609, 5642, 5676, 5710, 5744,
5777, 5811, 5845, 5879, 5912, 5946, 5980,
6014, 6047, 6081, 6115, 6149, 6182, 6216,
6250, 6284, 6317, 6351, 6385, 6419, 6452,
6486, 6520, 6554, 6587, 6621, 6655, 6689,
6722, 6756, 6790, 6824, 6857, 6891, 6925,
6959, 6992, 7026, 7060, 7094, 7127, 7161,
7195, 7229, 7262, 7296, 7330, 7364, 7397,
7431, 7465, 7499, 7532, 7566, 7600, 7634,
7667, 7701, 7735, 7769, 7802, 7836, 7870,
7904, 7937, 7971, 8005, 8039, 8072, 8106,
8140, 8174, 8207, 8241, 8275, 8309, 8342,
8376, 8410, 8444, 8477, 8511, 8545, 8579,
8612, 8646, 8680, 8714, 8747, 8781, 8815,
8849, 8882, 8917, 8953, 8988, 9024, 9089

9110 Index


	Welcome to Merchant's documentation!
	Welcome to Merchant's documentation!
	Indices and tables
	Merchant: Pluggable and Unified API for Payment Processors
	Overview
	Installing Merchant
	Credit Card
	Gateways
	On-site Processing
	Authorize.Net Gateway
	Beanstream
	Bitcoin Gateway
	Braintree Payments Server to Server
	Chargebee
	eWay Gateway
	Paylane Gateway
	PayPal Gateway
	Stripe Payments
	WePay Payments
	Off-site Processing
	PayPal Website Payments Standard
	WorldPay
	Amazon Flexible Payment Service
	Braintree Payments Transparent Redirect
	Stripe Payment Integration
	eWAY Payment Integration
	Authorize.Net Direct Post Method
	Signals
	Writing a new gateway
	Customizing Merchant
	Contributing to Merchant
	Changes

	Indices and tables
	Merchant: Pluggable and Unified API for Payment Processors
	Overview
	Installing Merchant
	Post-installation
	Configuration
	Running the Test Suite

	Credit Card
	Attribute Reference
	Method Reference
	Subclasses

	Gateways
	Attribute Reference
	Method Reference
	Helper functions

	On-site Processing
	Authorize.Net Gateway
	Usage

	Beanstream
	Example:

	Bitcoin Gateway
	Usage

	Braintree Payments Server to Server
	Example:

	Chargebee
	Example:

	eWay Gateway
	Usage

	Paylane Gateway
	Example:

	PayPal Gateway
	Usage

	Stripe Payments
	Example:

	WePay Payments
	Example:

	Off-site Processing
	Integration

	PayPal Website Payments Standard
	Test or Live Mode
	Example

	WorldPay
	Example

	Amazon Flexible Payment Service
	Example

	Braintree Payments Transparent Redirect
	Example:

	Stripe Payment Integration
	Example:

	eWAY Payment Integration
	Example:

	Authorize.Net Direct Post Method
	Example:

	Signals
	Writing a new gateway
	Customizing Merchant
	Contributing to Merchant
	Changes
	0.4 (upcoming)
	0.3
	0.2
	0.1
	0.09
	0.08
	0.07
	0.06
	0.05
	0.04
	0.03
	0.02
	0.01

	Indices and tables

